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Abstract - Analogous to multiple symbol differential detection of quadrature phase-shift- 
keying, a multiple bit differential detection scheme is described for offset QPSK that also 
exhibits continuous improvement in performance with increasing observation interval. 
Being derived from maximum-likelihood (ML) considerations, the proposed scheme is 
purported to be the most power efficient scheme for such a modulation and detection 
method. 

I. Introduction 

More than a decade ago, multiple symbol differential detection of M-ary phase-shift- 
keying (M-PSK) [ 11 was introduced by the author as a means of improving system 
performance relative to the traditional (two-symbol observation) differential detection 
scheme. The technique made use of maximum-likelihood sequence estimation (MLSE) 
of the transmitted phases rather than symbol-by-symbol detection and, depending on the 
number of symbols observed, its performance was shown to span between that of 
conventional differential detection and ideal coherent detection of differentially encoded 
M-PSK. Since then, many advancements and applications based on the original 
contribution in [ 11 have been reported in the literature examples of which can be found in 
[2-lo]. 

One special case of high interest corresponds to M = 4, i.e., quadrature phase- 
shift-keying (QPSK) and numerical results were reported in [ 11 for this case to allow 
comparison with conventional differential detection of QPSK (DQPSK). By comparison, 
the literature is quite sparse [ 1 1,121 regarding differential detection of offset QPSK 
(OQPSK) despite the fact that OQPSK has a much higher spectral containment than non- 
offset QPSK when transmitted over bandlimited nonlinear channels. As a compromise 
between these two spectral efficiencies, d4-DQPSK was proposed (see [13] for the 
original introduction of this modulation method) whose detection can be performed by a 
straightforward modification of the techniques used for conventional DQPSK and also 
for multiple symbol detection of DQPSK [ 141. While d4-DQPSK offered a modest 
improvement in spectral containment over QPSK (the maximum instantaneous phase 
transitions are reduced from 180" for the latter to 135" for the former) at little or no 
sacrifice in power efficiency, it was still a far cry from the spectral efficiency achieved by 
OQPSK. Understanding that, because of the inherent crosstalk between quadrature 
channels introduced by the lack of absolute phase knowledge associated with differential 
detection, one would expect to pay a power penalty when differentially detecting OQPSK 
(DOQPSK), the author set out to find the "best" one could do in this regard. Specifically, 
by applying the same MLSE principle used to achieve the performance enhancement of 
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DQPSK attained in [ 11, we derive an analogous multiple observation interval differential 
detection technique for OQPSK and examine its behavior in the limit of large observation 
time. 

In what follows we start by identifying an equivalent precoded continuous phase 
modulation (CPM) structure first for OQPSK and then next for differentially encoded 
OQPSK. It is shown that the required precoding for this equivalence is such as to result 
in a temary (0,-l,+l) CPM input alphabet.' Following this, we recall the results of the 
author for ML block detection of noncoherent CPM reported in [15] and then apply the 
technique used there to derive the decision metric and associated receiver structure for 
the precoded version that equivalently represents differentially encoded OQPSK. Finally, 
we evaluate (in terms of upper bounds) the average bit error probability performance of 
this multiple bit DOQPSK scheme for cases of practical interest and compare it with the 
analogous results for non-offset QPSK. 

11. Precoded CPM Equivalent of OQPSK and Differentially Encoded OQPSK 

In this section, we describe a representation of conventional OQPSK (rectangular pulse 
shaping implied) in the form of a precoded CPM modulation. Specifically, OQPSK has 
the form 

s( t )  = - cos(27T@ + @(t,a) + &), n q  I t I (n  + 1)q E 
where Eb and q respectively denote the energy and duration of a bit (P = Eb / 
signal power), and f, is the carrier frequency. In addition, @(t,a) is the phase 
modulation process that is expressible in the form 

is the 

$(t, a) = ?rz a& - iq) (2.2) 
iCn 

where a = (. . . , a-2, a_, , a, ,a,, a2,. . .) is a precoded version of the true data sequence and 
q( t )  is the normalized phase-smoothing response that defines how the underlying phase, 
nai, evolves with time during the associated bit interval. Without loss of generality, the 
arbitrary phase constant, @, , can be set to zero. For OQPSK, the phase pulse q(t)  is a 
step function, i.e., q(t)  = (1 / 2)u(t) [equivalently, the frequency pulse g ( t )  = dq( t )  / dt is 
the impulse function g ( t )  = (1 / 2)S(t)] and the ith element of the CPM data sequence, ai, 
can be shown to be related to the true input data bit sequence a = (.. . ,a-2,a-l,ao,~,~2,.. .) 
by [17, Chap. 3, pp. 177-17812 

As we shall see, the alphabet in any given bit interval is actually binary however, 
depending on the data sequence, it varies from bit to bit between (0,-1) and (O,+l). 

Note that the I and Q data symbols of the I-Q representation of OQPSK are respectively 
obtained as the even and odd bits of the sequence a .  Also note that, whereas this 
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(2.3) 

Since the ai’s take on +_I values, then the a i ’ s  come from a ternary (-l,O,+l) alphabet. 
However, in any given bit (half-symbol) interval, the ai’s can only assume one of two 
equiprobable values, namely, 0 and +1 or 0 and -1, with the further restriction that a +1 
cannot be followed by a -1, or vice versa. Thus, in reality, the modulation scheme is a 
binary CPM but one whose data alphabet can vary (between two choices) from bit 
interval to bit interval. Another way of characterizing the variation rule for the data 
alphabet is as follows: If the previous bit is 0, then the data alphabet for the current bit is 
switched relative to that available for the previous bit, Le., if it was (0,+1) for the 
previous transmission, it becomes (0,-1) for the current transmission, and vice versa. On 
the other hand, if the previous bit is a +1 or a -1, then the data alphabet for the current bit 
remains the same as that available for the previous bit, e.g., if it was (0,+1) for the 
previous transmission, it is again (0,+1) for the current transmission. 

In view of the representation in (2.2), we see that a value of a; = 0 suggests no 
change in carrier phase (no transition occurs in the I (or Q) data symbol sequence at the 
midsymbol time instant of the Q (I) data symbol), whereas a value of ai = f l  suggests a 
carrier phase change of fn / 2 (a transition occurs in the I (or Q) data symbol sequence at 
the midsymbol time instant of the Q (I) data symbol). Finally, note that since the 
duration of the frequency pulse does not exceed the baud (bit) interval, then the CPM 
representation of OQPSK is full response and can be implemented with the cascade of a 
precoder satisfying (2.3) and a conventional CPM modulator (see Fig. 1). 

In order to find a precoded CPM representation for differentially encoded 
OQPSK, we recall that if {b,,} is a binary (fl) independent and identically distributed 
(i.i.d.) sequence, then (a ,}  with elements a, = b,,a,,-, is the differentially encoded version 
of (b,,} and is also i.i.d. Alternatively, since b,, = ana,,-, , then the precoder of (2.3) can 
be rewritten in terms of the b,, ’s as 

Thus, Fig. 1 is also a precoded CPM representation of differentially encoded OQPSK if 
the precoder of (2.4) is used instead of that in (2.3). It is important to note that while for 
either OQPSK or differentially encoded OQPSK the input data sequence is i.i.d., the data 
sequence input to the CPM modulator, namely, {a,,}, is not i.i.d. In particular, it is 
straightforward to show from (2.4) that 

representation contains I and Q data sequences at the symbol rate , the effective data 
sequence for the CPM representation occurs at the half-symbol (bit) rate. 
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a, Iml= 1 
E{a,a,-,} = 3, m = 0 (2.5) 1 0, otherwise 

Thus, we see from (2.5) that adjacent symbols are correlated. Furthermore, the a priori 
probabilities of the a,’s are given by 

a, Id/ = 1 
+ , d = O  

Pr{a, = d }  = 

and the first-order conditional probabilities are given by 

1 
2 

Pr{a, =  la,-, = 0} = - 

Pr{a, = 11a,-~ = 0} = Pr{a, = -11a,-, = 0 }  = - 

Pr{a, = 01a,-, = I} = Pr{a, = ala,,-, = -I} = - 

Pr{a, = 1Ja,-, = I} = Pr{a, =  la,.-^ = -I} = - 

Pr{a, = 11a,-~ = -I} = Pr{a, = -11a,-~ = I} = o 

1 
4 
1 
2 
1 
2 

(2.7) 

Since the noncoherent demodulator of the CPM modulation will result in 
decisions {e,} on the symbols {a,}, then in order to convert these decisions into ones on 
the true input binary data sequence ({b,} for differentially encoded OQPSK), one would 
have to follow the CPM demodulator with a decoder that reverses the precoding 
operation in (2.4). Rather than do that, one can include an additional differential 
encoding operation at the transmitter in such a way that the decisions {e,} on the 
symbols {a,} will now directly reflect decisions on the true binary data input. To see 
how this can be accomplished, we define 

c, = 1 - 2laJ = 1 - lb, - b,J (2.8) 
Thus, c, = -1 if b,-, makes a transition and c, = 1 if b,-, does not make a transition. 
Since the relation between c, and b, is again that of conventional differential encoding, 
we see that decisions {;,} derived from the CPM demodulator decisions {e,} in 
accordance with (2.8) will represent decisions on an input data sequence {c,} whose 
differentially encoded version is {b,} . The inclusion of this additional differential 
encoder at the input of the OQPSK modulator results in a transmitter that implements 
OQPSK with a double differential encoder of its input binary data sequence (see Fig. 2 
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for the complete ~ys tem) .~  However, it can be shown that double differentially encoding 
the binary input sequence prior to demultiplexing into inphase (I) and quadrature (Q) 
sequences is exactly equivalent to first demultiplexing the input sequence and then 
differentially encoding the binary I and Q symbols [each of duration 2T, and offset with 
respect to one another (see Fig. 3)]. Since differentially encoded OQPSK is normally 
implemented as in Fig. 3, then the CPM receiver of Fig. 2 is, in reality, an appropriate 
demodulator of what is conventionally known as differentially encoded OQPSK. Before 
concluding, we note that the "folding over" of the three-level a,, decisions into two-level 
c,, decisions in accordance with (2.8) is analogous to what takes place in the decision rule 
for duobinary modulation [16, pp. 569-5751. 

111. Maximum-Likelihood Sequence Detection of Noncoherent Precoded CPM 

Expressing the real signal of (2.1) in complex baseband form, i.e., s ( t )  = Re{ $t)ejmcf} 

where S ( t )  = d m e i 4 ( r 7 a ) ,  then transmitting s ( t )  over an additive white Gaussian 
noise (AWGN) channel results in a received complex baseband signal I?(t) of the form 

R(t)  = 3(t)eje(') + n(t)  (3.1) 
where n(t) is a zero mean complex Gaussian noise process with two-sided power spectral 
density 2N,  W/Hz and O ( t )  is an arbitrary phase introduced by the channel which is 
assumed to be constant (independent of time) over some specified interval of time, i.e., 
O ( t )  = 8 but is otherwise unknown. Furthermore, in the absence of any side information, 
8 is assumed to be uniformly distributed in the interval (-n,n). Following the approach 
taken in [15], for an N-bit observation, the MLSE decision rule for jointly detecting the 
data sequence a = an-N+1,an-N+2 ,..., a,,-,,a,, is given by 4 

Choose a = a* corresponding to lB(a*)I = maxlp(a)l U (3.2) 
where5 

N - 1  

l = O  

with 

(3.4) 

Note that double differential encoding a binary input sequence of rate 1 / T is 
equivalent to passing the same sequence through a single differential encoder having a 
delay of 2T, [16, Chap. 81. 

conjugate. 

however; the product r'C, remains unchanged. 

The notation a" is intended to denote a particular sequence a not its complex 

Note that the definitions of r,, and C,, are slightly different from those in [15]; 
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representing the observation corresponding to the nth bit interval, Le., the complex output 
of an integrate-and-dump (I&D) filter and the coefficients { Cn} defined recursively by 

(3 .5)  - j ( 7 ~ / 2 ) a " - ~  -j(n12)a,-N+I C,,-[ = e Cn-l-l, 1 = 0 , 1 , * * . , N - 2 ,  Cn-N+l = e  
The corresponding phase trellis is illustrated in Fig. 4.6 Since the decision rule in (3.2) 
only involves the magnitude of p(a), then noting that the factor exp[-j(n / ~ ) C X , , - ~ + ~ ]  is 
common to each term of the sum in (3 .3) ,  we obtain 

Thus we observe from (3 .6)  that an observation of N bits actually results in a decision on 
only the N -  1 most recent bits, an-N+2,...,an-l,an as was the case for the multiple symbol 
differential detection scheme described in [ 11. Equivalently, to perform block-by-block 
detection, the observation intervals must be overlapped by one bit, i.e., the one that serves 
as a reference for detecting the remaining N - 1 bits. Finally, to arrive at decisions on 
the true input data stream, {cn}, the decision rule of (3 .2)  is modified in accordance with 
(2 .8)  to become 

Choose c = c* = 1 - 2la*l corresponding to lP(a*)I = maxlp(a)l a (3.7) 

Using recursive techniques, it can be shown that the number of values over which Ip(a)I 
is to be maximized, or equivalently, the number of possible sequences an-N+2,. .., a,,-l, a,, 
of length N - 1 is given by 

(3 .8)  

Before concluding this section, we note that had we simply input a binary i.i.d. 
data sequence directly (without the precoding of (2 .3)  or (2.4)) into the CPM modulator 
of Fig. 1, then the resulting output would be a binary PSK (BPSK) signal. Alternatively, 
if a conventional differential encoder was used as the precoder, then the output would be 
differentially encoded BPSK. In the case of the latter, the decision rule of (3.2) combined 
with (3.3) and (3 .4)  would precisely result in multiple bit differential detection of BPSK 
as one might expect. The difference here is that for OQPSK the alphabet from which the 
an's is chosen is ternary (in the sense explained above) and painvise correlated as 
opposed to BPSK where it is purely binary and i.i.d. 

To illustrate the above, let us consider a simple example corresponding to N = 3 .  
For this case, we obtain the following decision rule: 

Choose c,"-~ = 1 - 21a,"-,I and c," = 1 - 2141 corresponding to 

For purpose of clarity, a narrow frequency pulse is assumed rather than an impulse. 
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The N, = 7 possible values of lp(a,-l,an)l corresponding to (3.9) and their associated 
correct decisions, c:-l and c,*, are: 

(3.10) 

0 0 IC-, +rn-l +r,l 1 1 

0 1 1rn-, +r,-1 -jrn1 1 -1 

0 -1 lrn-2 +rn-l + j q  1 -1 

1 0 lrn-, - - jrn-l  - j q  -1 1 

-1 0 lrn-2 +jrn-l +jrnl -1 1 

1 1 Ir,-, -jrn-l -r,l -1 -1 

-1 -1 lrn-2 + jrn-l - ~ l  -1 -1 
which are all unique. Note from (2.6) and (2.7) that the a priori joint probabilities of the 
combinations of transmitted pairs an-l, a, corresponding to each of the four possible 
decision pairs C,*-~,C,* are all equal to 1/4. 

IV. Evaluation of an Upper Bound on Average Bit Error Probability 

To evaluate the performance of the receiver in Fig. 2, we make use of the technique in [ 11 
to obtain an upper bound on the average bit error probability (BEP). In particular, we use 
a union bound analogous to that used for upper bounding the performance of error 
correction coded systems. This bound is expression as the sum of the painvise error 
probabilities (PEP) associated with each N-bit error block. For our case, the PEPS can be 
evaluated exactly using the results of Stein [18] as applied to the noncoherent CPM 
problem in [19]. 

Mathematically speaking, let c = (c~-~+,,c~-~+~, ...,C~-~,C,) denote the sequence of 
N - 1 information bits and e = ( ~ n - N + 2 , ~ n - N + 3 ,  ...,~n-l,~n) be the corresponding sequence 
of detected bits. Then, 

where w(c,c) denotes the Hamming distance between c and 

which they disagree), Pr 

P(c,;) = 1 / N,(c,i) where N,(c,i) is the number of different error sequence pairs that 

(Le., the number of bits in 

> p c denotes the PEP that i? is chosen when c is sent, and {I ^I I 11 I 
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have to be considered for a particular ( ~ , e ) . ~  Note that 7, P(c,c)  = 2N-'(2N-1 - 1). 

The decision statistic 1/31 is defined in (3.6) and /3 is identical to (3.6) with c (or 

equivalently a) replaced by e (or equivalently &). Note that the number of PEPs, 
Pr /3 > /3 c , for any particular true sequence c depends on the sequence itself. For 

example, we see from (3.10) that for N = 3, there are 6 PEPs corresponding to c = (1,l) 
whereas for each of the remaining three c sequences, namely, (1,-l),(-1,l) and (-1,-1), 
there are two groups of 5 PEPs. 

C#? 

I AI 
{ lAI  1 1 1  } 

A. Evaluation of the Pairwise Error Probability 

To compute Pr{lBI > 1/311.>, or equivalently, Pr /3 > IpI IC , we use the approach taken in 

[ 151 which is in turn based on the approach used in [ 181 to evaluate the performance of 
{IT ' } 

noncoherent FSK. Specifically, letting q = 1/31' and 6 = 

Pr(6 > qlc} = 1[1- Q($,&) + e(&,&)] 
where Q(a,b) is the first order Marcum Q-function [20] and 

2 

with Eb / No denoting the bit signal-to-noise ratio (SNR) and 

(4.2) 

l=O 1=0 

It is understood that the summation in the exponent evaluates to zero if the upper index is 
negative. 

9. Case I: N = 2 

To illustrate the procedure, consider the simplest case corresponding to N = 2 .  
Tabulated below are the possible error sequences and corresponding values of (612, 
P(c,i?), and w(c,C).  

Note that for the analogous M-DQPSK problem considered in [l], N , ( C , ~ )  = 1 for all c 7 

and i? and thus the term P(c,?) was absent in the union bound on BEP. 
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0 1 -1 2 
0 -1 1 2 
1 0 1 2 
-1 0 -1 2 

1 -1 1 112 
1 -1 1 112 
-1 1 1 112 
-1 1 1 112 

(4.5) 
Thus, since there is only one value of 161' for all the error sequences, there is only PEP 
type which is evaluated from (4.2) and (4.3) as 

(4.6) 
Finally, using the values of w(c , t )  and P ( c , t )  from the above table, we obtain the upper 
bound on average BEP from (4.1) as 

(4.7) 
Comparing (4.7) with the optimum average BEP performance of DQPSK (which is 
exactly given by the right hand side of (4.7) with Eb replaced by E, = 2Eb), we note that, 
for a two-bit observation interval, the performance of the DOQPSK receiver is at most 
3 dB worse (based on the upper bound). In fact, it is not difficult to show that the upper 
bound of (4.7) is in fact equal to the actual average BEP performance of the DOQPSK 
receiver and thus the penalty relative to DQPSK is exactly 3 dB. This should not at all be 
surprising since the optimum DQPSK receiver [ 16, Chap. 71 makes differential decisions 
based on an observation of two symbol intervals (four bit intervals) whereas the 
DOQPSK receiver makes differential decisions based on an observation of two bit 
intervals. 

C. Case I/: N=3 

To further illustrate the procedure, consider once again the N = 3 case previously 
introduced in Section 111. For this case, it can be shown that there are a total of 36 
possible error sequence pairs resulting in only two different values of 1612, namely, 
1612 = 1 and 1612 = 5 corresponding respectively to b = 3 + 2f i ,  a = 3 - 2 f i  and 
b = 5,a = 1 .  The corresponding PEP types in accordance with (4.2) are then 
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(4.8) 
The accumulated value of w(c,?)P(c,?) for both of these PEPS is w(c,c)P(c,c) = 8. 
Finally then, the upper bound on average BEP of (4.1) is given by 

P,(E)  I PET: + PEP, (4.9) 

D. Asymptotic Behavior 
It is of interest to examine the asymptotic behavior of the average BEP in the limit of 
large E, /No so as to determine the amount of “coding gain”8 achieved as a function of 
the length of the observation interval. Borrowing a result from [l], in the limit of large 
SNR, the PEP of (4.2) can be approximated by 

or, using the asymptotic expansion for the complementary error function, i.e., 

1 erfc x z -exp(-x2) 
f i x  

(4.10) becomes 

(4.10) 

(4.11) 

(4.12) 

For N = 2, we observed that 161 = ./z for all four of the error sequence pairs. 
Thus, the PEP, or equivalently, the average BEP, can be asymptotically upper bounded 
(approximated) by 

(4.13) 

which, ignoring the factor preceding the complementary error function, performs 
-lOloglo(l- 1 /&) = 5.33 dB worse than coherent detection of differentially encoded 
QPSK [16, Ch. 41. 

By “coding gain” is meant the asymptotic reduction in required E, / N o  (based on the 
upper bound) that results from an MLSE based on an N-bit observation as opposed to a 2- 
bit observation. 
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For N = 3, applying the approximation of (4.12) to the two PEPS in (4.8) gives 

(4.14) 

Since for large SNR, PEP, dominates over PEE:, then the average PEP is asymptotically 
upper bounded by 

(4.15) 

which, ignoring the factor preceding the complementary error function, represents an 
improvement of 10 log,, [ (3 - a) / (2 - a)] = 1.153 dl3 over the two-bit observation 
case. 

E. General Asymptotic Behavior 
Analogous to what was observed in the previous subsection, in the general case of 
arbitrary N ,  the dominant terms in the average BEP occur for the sequences that result in 
the minimum value of N - 161, or equivalently, the maximum value of 161. One can easily 
show that this minimum value will certainly occur for the error sequence & having N - 1 
elements equal to the correct sequence a and one element with the smallest error. Thus, 
as in [l], either 

(4.16) 
or 

(4.17) 
which give identical results for 16Imx namely, 161mx = ,/(N - 1)2 + 1 . Hence, in 
accordance with (4.1) and (4.12), the average BEP is approximately upper bounded by 

(4.18) 
where the w(c ,$)P(c ,$)  terms in the double summation correspond only to those error 
sequence pairs that result in 16Imx. For example, for N = 3 the term PEC of (4.8) 
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corresponds to 161mx and, as previously stated just below that equation, the accumulated 
value of w(c,Z)P(c,?) is ccw(c,;)P(c,?) = 8.  Similarly, for N = 4, it can be shown 

that there are a total of 56 error sequence pairs each of length 3 that result in 16Imx and for 
these sequences ccw(c,;)P(c,?)  = 16. Going one step further, for N = 5 there are a 

total of 152 error sequence pairs each of length 4 that result in 16Imx and for these 
sequences cw(c,?)P(c,?) = 31.5.  

C+C 

C # C  

CtI!  

Fig. 5 is an illustration of the asymptotic upper bound on average BEP as 
computed from (4.18) versus E,, / No in dB and parameterized by the sequence length N .  
As was the case in [ 11, the largest improvement in performance is obtained for the first 
few increases in the value of N with diminishing returns from then on. 

Since the “coding gain” is obtained from the argument of the complementary 
error function, we see that, for arbitrary N ,  this gain (in dB) is given by 

N - J W  

2 - 4 5  
G = 10 log,, (4.19) 

Thus, for N = 4,  the coding gain is 1.554 dB which therefore represents an asymptotic 
S N R  loss of only 1.446 dB relative to the optimum DQPSK receiver bused on the same 
observation interval.’ In the limit of large N, the coding gain of (4.19) becomes 

1 lim G = 10 log,, - = 2.323 
N+- 2 - 4 3  

(4.20) 

which is now only 0.677 dB away from optimum two-symbol observation DQPSK 
performance. Of course, one can always apply multiple symbol differential detection to 
QPSK to also improve its performance as discussed in [ 11 which in the limit of large 
observation time approaches the average BEP performance of coherent detection of 
differentially encoded BPSK (or QPSK). Also, since the asymptotic performance of 
conventional (two-symbol observation) optimum DQPSK is also 2.323 dB worse than 
coherent detection of differentially encoded BPSK (or QPSK), we conclude that the 
limiting asymptotic behavior of DOQPSK as considered in this paper is at most 3 dB 
worse than the latter. 

5. Conclusions 

Based on a CPM representation for differentially encoded offset QPSK, we have derived 
and given the average BEP performance of a receiver that performs differential detection 
of this modulation. Since the receiver is derived from maximum-likelihood 

Recall that the optimum DQPSK receiver [ 16, Fig. 7.11 makes its decisions by 9 

examining the difference of two symbol decisions and thus its observation interval is 
2T, =4T,. 
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considerations, it is expected to be the most power efficient of its type. Based on its 
resemblance to multiple symbol detection of nonoffset QPSK, the performance of the 
receiver continues to improve as a function of the observation length (as measured in bit 
intervals) of the received signal. When compared to the optimum DQPSK receiver which 
bases its decision on the difference of two symbols, thus requiring observation of the 
received signal over two symbol (or equivalently, four bit) intervals, the proposed 
DOQPSK receiver with a 4-bit observation has an asymptotic S N R  penalty of 1.446 dB. 
In the limit of large SNR, whereas multiple symbol differential detection of QPSK 
approaches the performance of coherently detected BPSK with differential encoding, 
multiple bit differential detection of OQPSK has a similar limiting behavior but with a 
penalty of 3 dB. The same limiting behavior has also been demonstrated for spectrally 
shaped OQPSK [21,22] with linear phase variation. The development of the theory for 
this modulation scheme is omitted here because of space limitation but is reported in [23] 
which also includes a comparison with previous ad hoc methods [I l l .  
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Fig. 3. Differentially Encoded OQPSK Transmitter Equivalent to OQPSK with Double 
Differentially Encoded Binary Input Stream Transmitter of Fig. 2. 
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Fig. 4. Phase Trellis Diagram for OQPSK (Branches are labeled with values of ai) 
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